Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Reading Teacher ; : 1, 2023.
Article in English | Academic Search Complete | ID: covidwho-2219881

ABSTRACT

How has the COVID‐19 pandemic changed the home literacy environment, parental engagement, and home‐school communications for children and families from culturally and linguistically diverse backgrounds? Data on the experiences of 231 Chinese‐Canadian immigrant families with K‐2 children revealed that emergency remote learning affected the home literacy environment in complex ways. While some experienced a decrease in mainstream language exposure, others also witnessed a decline in home language use and literacy engagement due to the closure of heritage language schools and absence of grandparents. Parents also differed in their ability, resources, and confidence level in supporting multiliteracies development at home during the pandemic. Moreover, there existed persistent barriers to effective home‐school communications despite the affordances of remote learning. The findings have important implications for both immigrant families and mainstream teachers in working collaboratively to support the children's needs in multiliteracies development. [ FROM AUTHOR]

2.
Hum Vaccin Immunother ; 18(5): 2088966, 2022 11 30.
Article in English | MEDLINE | ID: covidwho-1895725

ABSTRACT

A lack of confidence on the vaccination drive hinders the management of the COVID-19 pandemic. We aimed to assess the antibody response to the SARS-CoV-2 vaccine among hospitalized patients in China. This case-control study was based on SARS-CoV-2 sero-surveillance during hospitalization. From April to June 2021, hospitalized patients without documented COVID-19 infection from the Department of Urology were routinely assayed for anti-SARS-CoV-2 antibodies. The SARS-CoV-2 vaccination history of each participant was obtained from their vaccination records. Of the 405 participants, there were 37 seropositive participants (case group) and 368 seronegative participants (control group); 68 participants (16.8%) had received the inactivated SARS-CoV-2 vaccine, including 54 who received the Sinovac-CoronaVac vaccine and 14 received the Sinopharm vaccine. All seropositive participants who had received one or two doses of the SARS-CoV-2 vaccine were assessed for at least 16 days, while 31 (8.4%) of 368 seronegative controls who had received the vaccine were tested for 1-94 days. The overall seroconversion rate was 54.4% (37/68) in the vaccinated participants who received the inactivated SARS-CoV-2 vaccine. The odds ratio (OR) and confidence interval (CI) for seropositivity was 6.20 (95% CI: 2.05-18.71) in those received full vaccination with two doses versus those partially vaccinated participants with one dose after adjusting for sex and age. These findings imply that the inactivated SARS-CoV-2 vaccine could have a protective antibody response.


Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19 Vaccines , Pandemics/prevention & control , SARS-CoV-2 , Antibody Formation , Case-Control Studies , COVID-19/prevention & control , Antibodies, Viral
3.
Biochem Genet ; 60(3): 1076-1094, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1520387

ABSTRACT

COVID-19 is a serious infectious disease that has recently swept the world, and research on its causative virus, SARS-CoV-2, remains insufficient. Therefore, this study uses bioinformatics analysis techniques to explore the human digestive tract diseases that may be caused by SARS-CoV-2 infection. The gene expression profile data set, numbered GSE149312, is from the Gene Expression Omnibus (GEO) database and is divided into a 24-h group and a 60-h group. R software is used to analyze and screen out differentially expressed genes (DEGs) and then gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses are performed. In KEGG, the pathway of non-alcoholic fatty liver disease exists in both the 24-h group and 60-h group. STRING is used to establish a protein-protein interaction (PPI) network, and Cytoscape is then used to visualize the PPI and define the top 12 genes of the node as the hub genes. Through verification, nine statistically significant hub genes are identified: AKT1, TIMP1, NOTCH, CCNA2, RRM2, TTK, BUB1B, KIF20A, and PLK1. In conclusion, the results of this study can provide a certain direction and basis for follow-up studies of SARS-CoV-2 infection of the human digestive tract and provide new insights for the prevention and treatment of diseases caused by SARS-CoV-2.


Subject(s)
COVID-19 , Computational Biology , COVID-19/genetics , Computational Biology/methods , Gene Expression Profiling/methods , Humans , Intestines , SARS-CoV-2/genetics
4.
J Mol Diagn ; 23(9): 1078-1084, 2021 09.
Article in English | MEDLINE | ID: covidwho-1386076

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious and has caused significant medical/socioeconomic impacts. Other than vaccination, effective public health measures, including contact tracing, isolation, and quarantine, is critical for deterring viral transmission, preventing infection progression and resuming normal activities. Viral transmission is affected by many factors, but the viral load and vitality could be among the most important ones. Although in vitro studies have indicated that the amount of virus isolated from infected individuals affects the successful rate of virus isolation, whether the viral load carried at the individual level would determine the transmissibility was unknown. We examined whether the cycle threshold (Ct) value, a measurement of viral load by RT-PCR assay, could differentiate the spreaders from the non-spreaders in a population of college students. Our results indicate that while at the population level the Ct value is lower, suggesting a higher viral load, in the symptomatic spreaders than that in the asymptomatic non-spreaders, there is a significant overlap in the Ct values between the two groups. Thus, Ct value, or the viral load, at the individual level could not predict the transmissibility. Instead, a sensitive method to detect the presence of virus is needed to identify asymptomatic individuals who may carry a low viral load but can still be infectious.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/transmission , COVID-19/virology , Multiplex Polymerase Chain Reaction/methods , Universities/statistics & numerical data , COVID-19/epidemiology , Carrier State/virology , Contact Tracing , Female , Humans , Louisiana/epidemiology , Male , Nasopharynx/virology , Public Health , Quarantine , Retrospective Studies , Students/statistics & numerical data , Viral Load , Young Adult
5.
Sci Adv ; 7(2)2021 01.
Article in English | MEDLINE | ID: covidwho-1066788

ABSTRACT

Point-of-care COVID-19 assays that are more sensitive than the current RT-PCR (reverse transcription polymerase chain reaction) gold standard assay are needed to improve disease control efforts. We describe the development of a portable, ultrasensitive saliva-based COVID-19 assay with a 15-min sample-to-answer time that does not require RNA isolation or laboratory equipment. This assay uses CRISPR-Cas12a activity to enhance viral amplicon signal, which is stimulated by the laser diode of a smartphone-based fluorescence microscope device. This device robustly quantified viral load over a broad linear range (1 to 105 copies/µl) and exhibited a limit of detection (0.38 copies/µl) below that of the RT-PCR reference assay. CRISPR-read SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) RNA levels were similar in patient saliva and nasal swabs, and viral loads measured by RT-PCR and the smartphone-read CRISPR assay demonstrated good correlation, supporting the potential use of this portable assay for saliva-based point-of-care COVID-19 diagnosis.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Point-of-Care Testing , Saliva/virology , Smartphone , Animals , CRISPR-Cas Systems , Chlorocebus aethiops , Computer Simulation , Female , Humans , Limit of Detection , Macaca mulatta , Male , Molecular Diagnostic Techniques/instrumentation , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Vero Cells , Viral Load
6.
Health Science Journal ; 14(2):1-13, 2020.
Article in English | ProQuest Central | ID: covidwho-833462

ABSTRACT

According to folk beliefs, the meats of the wild game have natural healing powers and are thus often used in "dietary therapy" and traditional Chinese medicine. The most common diagnosis tool has been quantitative reverse transcriptase PCR (qRT-PCR) but medical professionals have been pushing to establish diagnostic criteria based on high definition chest CT, in order to circumvent the limited capacity of the PCR kits [69]. [...]Japan, one of the most severely affected countries other than China, is also the host nation for the upcoming 2020 Summer Olympics [21]. [...]Japan is under great pressure to keep the epidemic in check ahead of the world's greatest support event, where heavy international traffic may exacerbate the spread of the virus [51]. [...]there is a speculation that SARSCoV-1 and SARS-CoV-2 have similar transmissions, since they are both coronaviruses.

7.
Psychiatr Serv ; 71(12): 1285-1287, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-835596

ABSTRACT

OBJECTIVE: This study aimed to explore the transmission of COVID-19 in a U.S. state psychiatric hospital setting. METHODS: Symptomatic and asymptomatic patients were tested throughout a large psychiatric hospital to determine penetrance. The hospital followed initial Centers for Disease Control and Prevention (CDC) guidelines. RESULTS: Seventy-eight percent (N=51 of 65) of tested patients in the building where the first positive patient was housed (building zero) tested positive for COVID-19. Eighty-eight percent (N=14 of 16) of tested asymptomatic patients in building zero were positive, compared with 12% (N=6 of 51) of randomly selected asymptomatic patients in a sample from the rest of the hospital. CONCLUSIONS: A high percentage of patients can become positive for COVID-19 despite following initial CDC guidelines. As such, use of masks by all patients in close-quarter settings prior to the first positive case appears warranted. Recent CDC guidelines align with this strategy.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19 , Cross Infection , Hospitals, Psychiatric/statistics & numerical data , Infection Control , Mental Disorders , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Testing/methods , COVID-19 Testing/statistics & numerical data , Cross Infection/diagnosis , Cross Infection/epidemiology , Cross Infection/prevention & control , Cross Infection/virology , Epidemiologic Studies , Female , Hospitals, State/statistics & numerical data , Humans , Infection Control/methods , Infection Control/standards , Inpatients/statistics & numerical data , Male , Mental Disorders/epidemiology , Mental Disorders/therapy , Middle Aged , Practice Guidelines as Topic , Random Allocation , SARS-CoV-2 , United States/epidemiology
8.
Biosens Bioelectron ; 164: 112316, 2020 Sep 15.
Article in English | MEDLINE | ID: covidwho-628702

ABSTRACT

Recent research suggests that SARS-CoV-2-infected individuals can be highly infectious while asymptomatic or pre-symptomatic, and that an infected person may infect 5.6 other individuals on average. This situation highlights the need for rapid, sensitive SARS-CoV-2 diagnostic assays capable of high-throughput operation that can preferably utilize existing equipment to facilitate broad, large-scale screening efforts. We have developed a CRISPR-based assay that can meet all these criteria. This assay utilizes a custom CRISPR Cas12a/gRNA complex and a fluorescent probe to detect target amplicons produced by standard RT-PCR or isothermal recombinase polymerase amplification (RPA), to allow sensitive detection at sites not equipped with real-time PCR systems required for qPCR diagnostics. We found this approach allowed sensitive and robust detection of SARS-CoV-2 positive samples, with a sample-to-answer time of ~50 min, and a limit of detection of 2 copies per sample. CRISPR assay diagnostic results obtained nasal swab samples of individuals with suspected COVID-19 cases were comparable to paired results from a CDC-approved quantitative RT-PCR (RT-qPCR) assay performed in a state testing lab, and superior to those produced by same assay in a clinical lab, where the RT-qPCR assay exhibited multiple invalid or inconclusive results. Our assay also demonstrated greater analytical sensitivity and more robust diagnostic performance than other recently reported CRISPR-based assays. Based on these findings, we believe that a CRISPR-based fluorescent application has potential to improve current COVID-19 screening efforts.


Subject(s)
Betacoronavirus/isolation & purification , CRISPR-Cas Systems , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Base Sequence , Betacoronavirus/genetics , Biosensing Techniques/methods , Biosensing Techniques/statistics & numerical data , COVID-19 , Coronavirus Infections/virology , Fluorescent Dyes , Genes, Viral , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/statistics & numerical data , Humans , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/statistics & numerical data , Pandemics , Pneumonia, Viral/virology , Predictive Value of Tests , RNA, Viral/analysis , RNA, Viral/genetics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/statistics & numerical data , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL